If it's not what You are looking for type in the equation solver your own equation and let us solve it.
0=-x^2+3x+40
We move all terms to the left:
0-(-x^2+3x+40)=0
We add all the numbers together, and all the variables
-(-x^2+3x+40)=0
We get rid of parentheses
x^2-3x-40=0
a = 1; b = -3; c = -40;
Δ = b2-4ac
Δ = -32-4·1·(-40)
Δ = 169
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{169}=13$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-3)-13}{2*1}=\frac{-10}{2} =-5 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-3)+13}{2*1}=\frac{16}{2} =8 $
| Y=-0.005x+2.2 | | 8+2w=5 | | 5x-2(-3)=16 | | 9f=2/1(12f−2) | | -6(x-12)^5=0 | | -(x-12)^6=0 | | 12^5y=8 | | a+308=4708 | | 20-a=-5 | | 5s=3s+4 | | m/12+5/6=5/24 | | 4(x-2)=3^2-x | | 5x-37=2 | | 8=-1/6*x | | f+3×3.14=7×3.14 | | 4x+12=10x+2 | | 3w+7=2+4w | | 10f+8=8-11f | | 2x+100=854 | | 3-p=7-5p | | 17=9-2(3x+15) | | 6r-7=2+5r | | 5a+7=4a+2 | | 2/x+3=2/3x+28/9 | | 9b-5b=24 | | 7w^2-63=0 | | 4c-15=17 | | 3+5(m+2)=28 | | (1÷x-3)+(1÷x+3)=(10÷x^2-9) | | (x/14)×11+x=576 | | -2x+27=15 | | 3(x+8)=4x |